Normal-inverse-gamma distribution ================================= The probability density function of the normal-inverse gamma distribution :math:`\mathcal{N}\Gamma^{-1}(\mu, \lambda, \alpha, \beta)` with location parameter :math:`\mu`, variance scale parameter :math:`\lambda > 0`, shape parameter :math:`\alpha > 0` and scale parameter :math:`\beta > 0,` for :math:`x \in \mathbb{R}` and :math:`\sigma^2 \in \mathbb{R}^+`, is given by .. math:: f(x,\sigma^2; \mu,\lambda,\alpha,\beta) = \frac {\sqrt{\lambda}} {\sigma\sqrt{2\pi} } \, \frac{\beta^\alpha}{\Gamma(\alpha)} \, \left( \frac{1}{\sigma^2} \right)^{\alpha + 1} \exp \left( -\frac { 2\beta + \lambda(x - \mu)^2} {2\sigma^2} \right), and the cumulative distribution function is .. math:: F(x,\sigma^2; \mu,\lambda,\alpha,\beta) = \frac{e^{-\frac{\beta}{\sigma^2}} \left(\frac{\beta }{\sigma ^2}\right)^\alpha \left(\operatorname{erf}\left(\frac{\sqrt{\lambda} (x-\mu )}{\sqrt{2} \sigma }\right)+1\right)}{2 \sigma^2 \Gamma (\alpha)}. The expected value and variance are as follows .. math:: \mathrm{E}[x] &= \mu, \quad \mathrm{E}[\sigma^2] = \frac{\beta}{\alpha-1}, \; \alpha > 1. \mathrm{Var}[x] &= \frac{\beta}{(\alpha - 1)\lambda}, \; \alpha > 1, \quad \mathrm{Var}[\sigma^2] = \frac{\beta^2}{(\alpha-1)^2(\alpha - 2)}, \; \alpha > 2. The normal-inverse-gamma distribution is used as a conjugate prior distribution for the normal distribution with unknown mean and variance. .. autoclass:: cprior.cdist.NormalInverseGammaModel :members: :inherited-members: :show-inheritance: .. autoclass:: cprior.cdist.NormalInverseGammaABTest :members: :inherited-members: :show-inheritance: .. autoclass:: cprior.cdist.NormalInverseGammaMVTest :members: :inherited-members: :show-inheritance: