Gamma distribution ================== Error probability or chance to beat ----------------------------------- Given two distributions :math:`X_A \sim \mathcal{G}(\alpha_A, \beta_A)` and :math:`X_B \sim \mathcal{G}(\alpha_B, \beta_B)` such that :math:`(\alpha_A, \beta_A, \alpha_B, \beta_B) \in \mathbb{R}_+^4`, :math:`P[X_B > X_A]` is given by .. math:: P[X_B > X_A] = 1 - \frac{\beta_A^{\alpha_A}\beta_B^{\alpha_B}}{(\beta_A + \beta_B)^{\alpha_A+\alpha_B}}\frac{_2F_1\left(1, \alpha_A + \alpha_B; \alpha_B + 1; \frac{\beta_B}{\beta_B + \beta_A}\right)}{\alpha_B B(\alpha_A, \alpha_B)} = I_{\frac{\beta_A}{\beta_A + \beta_B}}(\alpha_A, \alpha_B), where :math:`_2F_1(a,b;c;z)` is the Gauss hypergeometric function and :math:`I_x(a,b)` is the regularized incomplete beta function. Expected loss function ---------------------- The expected loss function can easily be calculated from the `definition `__ yielding .. math:: \mathrm{EL}(X_B) = \frac{\alpha_A}{\beta_A} I_{\frac{\beta_B}{\beta_A + \beta_A}}(\alpha_B, \alpha_A + 1) - \frac{\alpha_B}{\beta_B} I_{\frac{\beta_B}{\beta_A + \beta_A}}(\alpha_B + 1, \alpha_A). A similar expression is obtained for :math:`\mathrm{EL}(X_A)`, .. math:: \mathrm{EL}(X_A) = \frac{\alpha_B}{\beta_B} I_{\frac{\beta_A}{\beta_A + \beta_A}}(\alpha_A, \alpha_B + 1) - \frac{\alpha_A}{\beta_A} I_{\frac{\beta_A}{\beta_A + \beta_A}}(\alpha_A + 1, \alpha_B) Credible intervals ------------------ Credible intervals are employed to account for uncertainty in the expected loss and relative expected loss measures. Let us considered the relative expected loss if variant B is chosen, which follows the distribution :math:`(X_A - X_B)/X_B = X_A / X_B - 1`. This requires the distribution of the ratio of two random gamma variables, :math:`U = X_A / X_B`. The probability density function is given by .. math:: f(u) = \left(\frac{\beta_B}{\beta_A}\right)^{\alpha_B} \frac{u^{\alpha_B - 1} (1 + \frac{\beta_B}{\beta_A}u)^{-\alpha_A - \alpha_B}}{B(\alpha_A, \alpha_B)}. Note that this is the probability density function of the generalized beta prime distribution. The cumulative distribution function is given by .. math:: F(u) = I_{\frac{u}{u + \frac{\beta_B}{\beta_A}}}(\alpha_A, \alpha_B). .. note:: Credible intervals are computed by solving :math:`F(u) = p`, :math:`p \in [0, 1]`. A reasonable starting point is the normal approximation of the gamma distribution. The expected value and variance of the distribution :math:`Z = (X_A - X_B)/X_B = X_A / X_B - 1` can be computed using .. math:: \mathrm{E}\left[\frac{X_A}{X_B} \right] = \frac{\alpha_A}{(\alpha_B - 1)}\frac{\beta_B}{\beta_A}. .. math:: \mathrm{Var} \left[\frac{X_A}{X_B} \right] = \frac{\alpha_A (\alpha_A + \alpha_B - 1)}{(\alpha_B - 2)(\alpha_B - 1)^2} \left(\frac{\beta_B}{\beta_A}\right)^2. Proofs ------ Error probability """"""""""""""""" Integrating the joint distribution over all values of :math:`X_B > X_A` we obtain the integral .. math:: P[X_B > X_A] &= \int_0^{\infty} \int_{x_A}^{\infty} \frac{\beta_A^{\alpha_A}}{\Gamma(\alpha_A)} x_A^{\alpha_A - 1} e^{-\beta_A x_A} \frac{\beta_B^{\alpha_B}}{\Gamma(\alpha_B)} x_B^{\alpha_B - 1} e^{-\beta_B x_A} \mathop{dx_B}\mathop{dx_A}\\ &= 1 - \int_0^{\infty}\frac{\beta_A^{\alpha_A}}{\Gamma(\alpha_A)} x_A^{\alpha_A - 1} e^{-\beta_A x_A} P(\alpha_B, \beta_B x_A)\mathop{dx_A}, where :math:`P(a,z)` is the regularized lower incomplete gamma function defined by .. math:: P(a, z) = \frac{\gamma(a, z)}{\Gamma(a)} = 1 - Q(a,z), and :math:`Q(a,z)` is the regularized upper incomplete gamma function with series expansion .. math:: Q(a,z) = \frac{\Gamma(a,z)}{\Gamma(a)} = 1 - z^a e^{-z} \sum_{k=0}^{\infty}\frac{z^k}{\Gamma(a+k+1)}. Hence, the integral is rewritten in the form .. math:: P[X_B > X_A] = \int_0^{\infty}\frac{\beta_A^{\alpha_A}}{\Gamma(\alpha_A)} x^{\alpha_A - 1} e^{-\beta_A x} Q(\alpha_B, \beta_B x) \mathop{dx}. Interchange of integration and summation leads to a representation in terms of the Gauss hypergeometric function :math:`_2F_1(a,b;c;z)`, also expressible in terms of the incomplete beta function .. math:: P[X_B > X_A] &= 1 - \frac{\beta_A^{\alpha_A}\beta_B^{\alpha_B}}{\Gamma(\alpha_A)}\int_0^{\infty} x^{\alpha_A + \alpha_B - 1} e^{-(\beta_A + \beta_B) x} \sum_{k=0}^{\infty}\frac{(\beta_B x)^k}{\Gamma(\alpha_B + k + 1)} \mathop{dx}\\ &= 1 - \frac{\beta_A^{\alpha_A}\beta_B^{\alpha_B}}{\Gamma(\alpha_A)} \sum_{k=0}^{\infty} \frac{\beta_B^k}{\Gamma(\alpha_B + k + 1)}\int_0^{\infty}x^{\alpha_A + \alpha_B + k - 1} e^{-(\beta_A + \beta_B) x}\mathop{dx}\\ & =1 - \frac{\beta_A^{\alpha_A}\beta_B^{\alpha_B}}{(\beta_A + \beta_B)^{\alpha_A+\alpha_B}}\sum_{k=0}^{\infty}\frac{\Gamma(\alpha_A + \alpha_B + k)}{\Gamma(\alpha_B + k + 1) \Gamma(\alpha_A)} \left(\frac{\beta_B}{\beta_A + \beta_B}\right)^k\\ &=1 - \frac{\beta_A^{\alpha_A}\beta_B^{\alpha_B}}{(\beta_A + \beta_B)^{\alpha_A+\alpha_B}}\frac{_2F_1\left(1, \alpha_A + \alpha_B; \alpha_B + 1; \frac{\beta_B}{\beta_B + \beta_A}\right)}{\alpha_B B(\alpha_A, \alpha_B)}= I_{\frac{\beta_A}{\beta_A + \beta_B}}(\alpha_A, \alpha_B).