Bernoulli-beta conjugate model ============================== Posterior predictive distribution --------------------------------- If :math:`X|p \sim \mathcal{BE}(p)` with :math:`p \sim \mathcal{B}(\alpha, \beta)`, then the posterior predictive probability density function, the expected value and variance of :math:`X` are .. math:: f(x; \alpha, \beta) = \begin{cases} \frac{\beta}{\alpha + \beta} & \text{if $x = 0$}\\ \frac{\alpha}{\alpha + \beta} & \text{if $x = 1$}, \end{cases} .. math:: \mathrm{E}[X] = \frac{\alpha}{\alpha + \beta}, \quad \mathrm{Var}[X] = \frac{\alpha \beta}{(\alpha + \beta)^2}. Proofs ------ Posterior predictive probability density function .. math:: f(x=0) &= \int_0^1 (1-p) \frac{p^{\alpha - 1} (1-p)^{\beta - 1}}{B(\alpha, \beta)} \mathop{dp} = \mathrm{E}[1-p] = \frac{\beta}{\alpha + \beta}. f(x=1) &= \int_0^1 p \frac{p^{\alpha - 1} (1-p)^{\beta - 1}}{B(\alpha, \beta)} \mathop{dp} = \mathrm{E}[p] = \frac{\alpha}{\alpha + \beta}. Posterior predictive expected value .. math:: \mathrm{E}[X] = \mathrm{E}[\mathrm{E}[X | p]] = \mathrm{E}[p] = \frac{\alpha}{\alpha + \beta}. Posterior predictive variance .. math:: \mathrm{Var}[X] = \mathrm{E}[X^2] - \mathrm{E}[X]^2 = \frac{\alpha}{\alpha + \beta} - \left(\frac{\alpha}{\alpha + \beta}\right)^2 = \frac{\alpha \beta}{(\alpha + \beta)^2}.