Geometric-beta conjugate model ============================== Posterior predictive distribution --------------------------------- If :math:`X|p \sim \mathcal{G}(p)` with :math:`p \sim \mathcal{B}(\alpha, \beta)`, then the posterior predictive probability density function, the expected value and variance of :math:`X` are .. math:: f(x; \alpha, \beta) = \frac{B(\alpha + 1, \beta + x - 1)}{B(\alpha, \beta)}, \quad x = 0, 1, 2, \ldots. .. math:: \mathrm{E}[X] = \frac{\alpha + \beta - 1}{\alpha - 1}, \quad \mathrm{Var}[X] = \frac{\beta (\alpha + \beta - 1)}{(\alpha - 1)^2 (\alpha - 2)}, where :math:`\mathrm{E}[X]` is defined for :math:`\alpha > 1` and :math:`\mathrm{Var}[X]` is defined for :math:`\alpha > 2`. Proofs ------ Posterior predictive probability density function .. math:: f(x; \alpha, \beta) &= \int_0^1 (1 - p)^{x - 1} p \frac{p^{\alpha - 1} (1-p)^{\beta - 1}}{B(\alpha, \beta)} \mathop{dp}\\ &= \frac{1}{B(\alpha, \beta)} \int_0^1 p^{\alpha} (1-p)^{\beta + x - 2} \mathop{dp} = \frac{B(\alpha + 1, \beta + x - 1)}{B(\alpha, \beta)}. Posterior predictive expected value .. math:: \mathrm{E}[X] = \mathrm{E}[\mathrm{E}[X | p]] = \mathrm{E}\left[\frac{1}{p}\right] = \frac{\alpha + \beta - 1}{\alpha - 1}. Note that, .. math:: \mathrm{E}\left[\frac{1}{p}\right] = \int_0^1 \frac{1}{p} \frac{p^{\alpha - 1} (1-p)^{\beta - 1}}{B(\alpha, \beta)} \mathop{dp} = \int_0^1 \frac{p^{\alpha - 2} (1-p)^{\beta - 1}}{B(\alpha - 1, \beta)} \frac{\alpha + \beta - 1}{\alpha - 1} \mathop{dp} = \frac{\alpha + \beta - 1}{\alpha - 1}, where we use the property of the beta function: :math:`B(a -1, b) = \frac{a + b - 1}{a - 1} B(a, b)`. Posterior predictive variance .. math:: \mathrm{Var}[X] = \mathrm{E}[X^2] - \mathrm{E}[X]^2 = \frac{\beta (\alpha + \beta - 1)}{(\alpha - 1)^2 (\alpha - 2)}. Similarly, we have that .. math:: \mathrm{E}[X^2] = \frac{\alpha + \beta - 1}{\alpha - 1}\frac{\alpha + \beta - 2}{\alpha - 2} and .. math:: \mathrm{Var}[X] = \frac{\alpha + \beta - 1}{\alpha - 1}\frac{\alpha + \beta - 2}{\alpha - 2} - \left(\frac{\alpha + \beta - 1}{\alpha - 1}\right)^2 = \frac{\beta (\alpha + \beta - 1)}{(\alpha - 1)^2 (\alpha - 2)}. .. note:: The same can be proven applying properties of the beta and beta prime distribution. Given that if :math:`X \sim \mathcal{B}(a, b) \rightarrow \frac{X}{1 - X} \sim \beta'(a, b)` and if :math:`Y \sim \beta'(a, b) \rightarrow \frac{1}{Y} \sim \beta'(b, a)`, we get that if :math:`X \sim \mathcal{B}(a, b)` then :math:`\frac{1 - X}{X} \sim \beta'(b, a)`, thus .. math:: \mathrm{E}\left[\frac{1}{X}\right] = \frac{\beta}{\alpha - 1} + 1 = \frac{\alpha + \beta - 1}{\alpha - 1}, and .. math:: \mathrm{Var}\left[\frac{1}{X}\right] = \frac{\beta (\alpha + \beta - 1)}{(\alpha - 1)^2 (\alpha - 2)}.