Normal-normal-inverse-gamma conjugate model =========================================== Posterior predictive distribution --------------------------------- If :math:`X| \mu, \sigma^2 \sim \mathcal{N}(\mu, \sigma^2)` with :math:`(\mu, \sigma) \sim \mathcal{N}\Gamma^{-1}(\mu_0, \lambda, \alpha, \beta)`, then the posterior predictive probability density function, the expected value and variance of :math:`X` are .. math:: f(x; \mu_0, \lambda, \alpha, \beta) = \frac{\alpha}{\beta(1 + \lambda^{-1})} \frac{\left(1 + \frac{1}{2\alpha} \left(\frac{\alpha(x - \mu_0)}{\beta(1+\lambda^{-1})} \right)^2 \right)^{-\alpha - 1/2}} {\sqrt{2\alpha}B(\alpha, 1/2)}, .. math:: \mathrm{E}[X] = \mu_0, \quad \mathrm{Var}[X] = \frac{\left(\beta(1 + \lambda^{-1})\right)^2}{\alpha(\alpha - 1)}, where :math:`\mathrm{E}[X]` is defined for :math:`\alpha > 1/2` and :math:`\mathrm{Var}[X]` is defined for :math:`\alpha > 1`. Proofs ------ Posterior predictive probability density function Note that this is the probability density function of the Student's t-distribution, thus .. math:: X \sim t_{2 \alpha}\left(\mu_0, \frac{\beta (1 + \lambda^{-1})}{\alpha}\right), see :cite:`Murphy2007`. Posterior predictive expected value Apply properties of the Student's t-distribution. .. math :: \mathrm{E}[X] = \mu_0. Posterior predictive variance Apply properties of the Student's t-distribution. .. math:: \mathrm{Var}[X] = \frac{\left(\beta(1 + \lambda^{-1})\right)^2}{\alpha(\alpha - 1)}. References ---------- .. bibliography:: refs.bib :filter: docname in docnames