Normal distribution¶
The normal distribution or Gaussian distribution is a continuous probability distribution. The probability density function of a normal distribution with mean \(\mu\) and standard deviation \(\sigma\) for \(x \in \mathbb{R}\) is
and the cumulative distribution is
The expected value and variance are as follows
The normal distribution is used to model/approximate symmetric centralized distributions.
- 
class cprior.models.NormalModel(name='', loc=0.001, variance_scale=0.001, shape=0.001, scale=0.001)¶
- Bases: - cprior.cdist.normal_inverse_gamma.NormalInverseGammaModel- Bayesian model with a normal likelihood and a normal-inverse-gamma prior distribution. - Given data samples \(\mathbf{x} = (x_1, \ldots, x_n)\) from a normal distribution with parameters mean \(\mu\), and variance \(\sigma^2\), the posterior distribution is \[\mu, \sigma^2 | \mathbf{x} \sim \mathcal{N}\Gamma^{-1}\left(\mu_n, \lambda_n, \alpha_n, \beta_n\right),\]- where, \[ \begin{align}\begin{aligned}\mu_n &= \frac{\lambda \mu_0 + n \bar{x}}{\lambda + n},\\\lambda_n &= \lambda + n,\\\alpha_n &= \alpha + \frac{n}{2},\\\beta_n &= \beta + \frac{1}{2} \left(\sum_{i=1}^n (x_i - \bar{x})^2 + \frac{n \lambda (\bar{x} - \mu_0)^2}{\lambda + n} \right).\end{aligned}\end{align} \]- with prior parameters \(\mu_0\) (loc), \(\lambda\) (variance_scale), \(\alpha\) (shape) and \(\beta\) (scale). Note that \(n \bar{x} = \sum_{i=1}^n x_i\). - Parameters: - name (str (default="")) – Model name.
- loc (float (default=0.001)) – Prior parameter loc.
- variance_scale (float (default=0.001)) – Prior parameter variance_scale.
- shape (float (default=0.001)) – Prior parameter shape.
- scale (float (default=0.001)) – Prior parameter scale.
 - 
n_samples_¶
- Number of samples. - Type: - int 
 - 
cdf(x, sig2)¶
- Cumulative distribution function of the posterior distribution. - Parameters: - x (array-like) – Quantiles.
- sig2 (array-like) – Quantiles.
 - Returns: - cdf – Cumulative distribution function evaluated at (x, sig2). - Return type: - numpy.ndarray 
 - 
credible_interval(interval_length)¶
- Credible interval of the posterior distribution. - Parameters: - interval_length (float (default=0.9)) – Compute - interval_length% credible interval. This is a value in [0, 1].- Returns: - interval – Lower and upper credible interval limits. - Return type: - tuple 
 - 
loc_posterior¶
- Posterior parameter mu (location). - Returns: - mu - Return type: - float 
 - 
mean()¶
- Mean of the posterior distribution. - Returns: - mean - Return type: - tuple of floats 
 - 
pdf(x, sig2)¶
- Probability density function of the posterior distribution. - Parameters: - x (array-like) – Quantiles.
- sig2 (array-like) – Quantiles.
 - Returns: - pdf – Probability density function evaluated at (x, sig2). - Return type: - numpy.ndarray 
 - 
ppf(q)¶
- Percent point function (quantile) of the posterior distribution. - Parameters: - x (array-like) – Lower tail probability. - Returns: - ppf – Quantile corresponding to the lower tail probability q. - Return type: - tuple of numpy.ndarray 
 - 
ppmean()¶
- Posterior predictive mean. - If \(X\) follows a normal distribution with parameters \(\mu\) and \(\sigma^2\), then the posterior predictive expected value is given by \[\mathrm{E}[X] = \mu_0,\]- where \(\mu_0\) is the posterior value of the parameter. - Returns: - mean - Return type: - float 
 - 
pppdf(x)¶
- Posterior predictive probability density function. - If \(X\) follows a normal distribution with parameters \(\mu\) and \(\sigma^2\), then the posterior predictive probability density function is given by the probability density function of the following Student’s t-distribution \[t_{2 \alpha}\left(\mu_0, \frac{\beta (1 + \lambda^{-1})}{\alpha}\right),\]- where \(\mu_0\), \(\lambda\), \(\alpha\) and \(\beta\) are the posterior values of the parameters. - Parameters: - x (array-like) – Quantiles. - Returns: - pdf – Probability density function evaluated at x. - Return type: - float 
 - 
ppvar()¶
- Posterior predictive variance. - If \(X\) follows a normal distribution with parameters \(\mu\) and \(\sigma^2\), then the posterior predictive variance is given by \[\mathrm{Var}[X] = \frac{\left(\beta(1 + \lambda^{-1})\right)^2} {\alpha(\alpha - 1)},\]- where \(\lambda\), \(\alpha\) and \(\beta\) are the posterior values of the parameters. - Returns: - var - Return type: - float 
 - 
rvs(size=1, random_state=None)¶
- Random variates of the posterior distribution. - Parameters: - size (int (default=1)) – Number of random variates.
- random_state (int or None (default=None)) – The seed used by the random number generator.
 - Returns: - rvs – Random variates of given size (size, 2). - Return type: - numpy.ndarray 
 - 
scale_posterior¶
- Posterior parameter beta (scale). - Returns: - beta - Return type: - float 
 - 
shape_posterior¶
- Posterior parameter alpha (shape). - Returns: - alpha - Return type: - float 
 - 
std()¶
- Standard deviation of the posterior distribution. - Returns: - std - Return type: - tuple of floats 
 - 
update(data)¶
- Update posterior parameters with new data. - Parameters: - data (array-like, shape = (n_samples)) – Data samples from a normal distribution. 
 - 
var()¶
- Variance of the posterior distribution. - Returns: - var - Return type: - tuple of floats 
 - 
variance_scale_posterior¶
- Posterior parameter lambda (variance_scale). - Returns: - lambda - Return type: - float 
 
- 
class cprior.models.NormalABTest(modelA, modelB, simulations=1000000, random_state=None)¶
- Bases: - cprior.cdist.normal_inverse_gamma.NormalInverseGammaABTest- Normal A/B test. - Parameters: - modelA (object) – The control model.
- modelB (object) – The variation model.
- simulations (int or None (default=1000000)) – Number of Monte Carlo simulations.
- random_state (int or None (default=None)) – The seed used by the random number generator.
 - 
expected_loss(method='exact', variant='A', lift=0)¶
- Compute the expected loss. This is the expected uplift lost by choosing a given variant. - If variant == "A", \(\mathrm{E}[\max(B - A - lift, 0)]\)
- If variant == "B", \(\mathrm{E}[\max(A - B - lift, 0)]\)
- If variant == "all", both.
 - If - liftis positive value, the computation method must be Monte Carlo sampling.- Parameters: - method (str (default="exact")) – The method of computation. Options are “exact” and “MC”.
- variant (str (default="A")) – The chosen variant. Options are “A”, “B”, “all”.
- lift (float (default=0.0)) – The amount of uplift.
 - Returns: - expected_loss - Return type: - tuple of floats - Notes - Method “exact” uses the normal approximation of the Student’s t-distribution for the expected loss of the mean when the number of degrees of freedom is large. For small values, numerical intergration is used. 
- If 
 - 
expected_loss_ci(method='MC', variant='A', interval_length=0.9, ci_method='ETI')¶
- Compute credible intervals on the difference distribution of \(Z = B-A\) and/or \(Z = A-B\). - If variant == "A", \(Z = B - A\)
- If variant == "B", \(Z = A - B\)
- If variant == "all", both.
 - Parameters: - method (str (default="MC")) – The method of computation. Options are “asymptotic” and “MC”.
- variant (str (default="A")) – The chosen variant. Options are “A”, “B”, “all”.
- interval_length (float (default=0.9)) – Compute interval_length% credible interval. This is a value in [0, 1].
- ci_method (str (default="ETI")) – Method to compute credible intervals. Supported methods are Highest
Density interval (method="HDI) and Equal-tailed interval (method="ETI"). Currently,method="HDIis only available formethod="MC".
 - Returns: - expected_loss_ci - Return type: - tuple of floats 
- If 
 - 
expected_loss_relative(method='exact', variant='A')¶
- Compute expected relative loss for choosing a variant. This can be seen as the negative expected relative improvement or uplift. - If variant == "A", \(\mathrm{E}[(B - A) / A]\)
- If variant == "B", \(\mathrm{E}[(A - B) / B]\)
- If variant == "all", both.
 - Parameters: - method (str (default="exact")) – The method of computation. Options are “exact” and “MC”.
- variant (str (default="A")) – The chosen variant. Options are “A”, “B”, “all”.
 - Returns: - expected_loss_relative - Return type: - tuple of floats - Notes - Method “exact” uses an approximation of \(E[1/X]\) where \(X\) follows a Student’s t-distribution. 
- If 
 - 
expected_loss_relative_ci(method='MC', variant='A', interval_length=0.9, ci_method='ETI')¶
- Compute credible intervals on the relative difference distribution of \(Z = (B-A)/A\) and/or \(Z = (A-B)/B\). - If variant == "A", \(Z = (B-A)/A\)
- If variant == "B", \(Z = (A-B)/B\)
- If variant == "all", both.
 - Parameters: - method (str (default="MC")) – The method of computation. Options are “asymptotic”, “exact” and “MC”.
- variant (str (default="A")) – The chosen variant. Options are “A”, “B”, “all”.
- interval_length (float (default=0.9)) – Compute interval_length% credible interval. This is a value in [0, 1].
- ci_method (str (default="ETI")) – Method to compute credible intervals. Supported methods are Highest
Density interval (method="HDI) and Equal-tailed interval (method="ETI"). Currently,method="HDIis only available formethod="MC".
 - Returns: - expected_loss_relative_ci - Return type: - tuple of floats - Notes - Method “exact” uses the normal approximation of the Student’s t-distribution for the expected loss of the mean. 
- If 
 - 
probability(method='exact', variant='A', lift=0)¶
- Compute the error probability or chance to beat control. - If variant == "A", \(P[A > B + lift]\)
- If variant == "B", \(P[B > A + lift]\)
- If variant == "all", both.
 - If - liftis positive value, the computation method must be Monte Carlo sampling.- Parameters: - method (str (default="exact")) – The method of computation. Options are “exact” and “MC”.
- variant (str (default="A")) – The chosen variant. Options are “A”, “B”, “all”.
- lift (float (default=0.0)) – The amount of uplift.
 - Returns: - probability - Return type: - tuple of floats - Notes - Method “exact” uses the normal approximation of the Student’s t-distribution for the error probability of the mean when the number of degrees of freedom is large. For small values, numerical intergration is used. 
- If 
 - 
update_A(data)¶
- Update posterior parameters for variant A with new data samples. - Parameters: - data (array-like, shape = (n_samples)) – 
 - 
update_B(data)¶
- Update posterior parameters for variant B with new data samples. - Parameters: - data (array-like, shape = (n_samples)) – 
 
- 
class cprior.models.NormalMVTest(models, simulations=1000000, random_state=None, n_jobs=None)¶
- Bases: - cprior.cdist.normal_inverse_gamma.NormalInverseGammaMVTest- Normal Multivariate test. - Parameters: - models (dict) – The control and variations models.
- simulations (int or None (default=1000000)) – Number of Monte Carlo simulations.
- random_state (int or None (default=None)) – The seed used by the random number generator.
 - 
expected_loss(method='exact', control='A', variant='B', lift=0)¶
- Compute the expected loss. This is the expected uplift lost by choosing a given variant, i.e., \(\mathrm{E}[\max(control - variant - lift, 0)]\). - If - liftis positive value, the computation method must be Monte Carlo sampling.- Parameters: - method (str (default="exact")) – The method of computation. Options are “exact” and “MC”.
- control (str (default="A")) – The control variant.
- variant (str (default="B")) – The tested variant.
- lift (float (default=0.0)) – The amount of uplift.
 - Returns: - expected_loss - Return type: - tuple of floats - Notes - Method “exact” uses the normal approximation of the Student’s t-distribution for the expected loss of the mean when the number of degrees of freedom is large. For small values, numerical intergration is used. 
 - 
expected_loss_ci(method='MC', control='A', variant='B', interval_length=0.9, ci_method='ETI')¶
- Compute credible intervals on the difference distribution of \(Z = control-variant\). - Parameters: - method (str (default="MC")) – The method of computation. Options are “asymptotic” and “MC”.
- control (str (default="A")) – The control variant.
- variant (str (default="B")) – The tested variant.
- interval_length (float (default=0.9)) – Compute interval_length% credible interval. This is a value in [0, 1].
- ci_method (str (default="ETI")) – Method to compute credible intervals. Supported methods are Highest
Density interval (method="HDI) and Equal-tailed interval (method="ETI"). Currently,method="HDIis only available formethod="MC".
 - Returns: - expected_loss_ci - Return type: - tuple of floats 
 - 
expected_loss_relative(method='exact', control='A', variant='B')¶
- Compute expected relative loss for choosing a variant. This can be seen as the negative expected relative improvement or uplift, i.e., \(\mathrm{E}[(control - variant) / variant]\). - Parameters: - method (str (default="exact")) – The method of computation. Options are “exact” and “MC”.
- control (str (default="A")) – The control variant.
- variant (str (default="B")) – The tested variant.
 - Returns: - expected_loss_relative - Return type: - tuple of floats - Notes - Method “exact” uses an approximation of \(E[1/X]\) where \(X\) follows a Student’s t-distribution. 
 - 
expected_loss_relative_ci(method='MC', control='A', variant='B', interval_length=0.9, ci_method='ETI')¶
- Compute credible intervals on the relative difference distribution of \(Z = (control - variant) / variant\). - Parameters: - method (str (default="MC")) – The method of computation. Options are “asymptotic”, “exact” and “MC”.
- control (str (default="A")) – The control variant.
- variant (str (default="B")) – The tested variant.
- interval_length (float (default=0.9)) – Compute interval_length% credible interval. This is a value in [0, 1].
- ci_method (str (default="ETI")) – Method to compute credible intervals. Supported methods are Highest
Density interval (method="HDI) and Equal-tailed interval (method="ETI"). Currently,method="HDIis only available formethod="MC".
 - Returns: - expected_loss_relative_ci - Return type: - tuple of floats 
 - 
expected_loss_relative_vs_all(method='quad', control='A', variant='B', mlhs_samples=1000)¶
- Compute the expected relative loss against all variations. For example, given variants “A”, “B”, “C” and “D”, and choosing variant=”B”, we compute \(\mathrm{E}[(\max(A, C, D) - B) / B]\). - Parameters: - method (str (default="quad")) – The method of computation. Options are “MC” (Monte Carlo), “MLHS” (Monte Carlo + Median Latin Hypercube Sampling) and “quad” (numerical integration).
- variant (str (default="B")) – The chosen variant.
- mlhs_samples (int (default=1000)) – Number of samples for MLHS method.
 - Returns: - expected_loss_relative_vs_all - Return type: - tuple of floats 
 - 
expected_loss_vs_all(method='quad', variant='B', lift=0, mlhs_samples=1000)¶
- Compute the expected loss against all variations. For example, given variants “A”, “B”, “C” and “D”, and choosing variant=”B”, we compute \(\mathrm{E}[\max(\max(A, C, D) - B, 0)]\). - If - liftis positive value, the computation method must be Monte Carlo sampling.- Parameters: - method (str (default="quad")) – The method of computation. Options are “MC” (Monte Carlo), “MLHS” (Monte Carlo + Median Latin Hypercube Sampling) and “quad” (numerical integration).
- variant (str (default="B")) – The chosen variant.
- lift (float (default=0.0)) – The amount of uplift.
- mlhs_samples (int (default=1000)) – Number of samples for MLHS method.
 - Returns: - expected_loss_vs_all - Return type: - tuple of floats 
 - 
probability(method='exact', control='A', variant='B', lift=0)¶
- Compute the error probability or chance to beat control, i.e., \(P[variant > control + lift]\). - If - liftis positive value, the computation method must be Monte Carlo sampling.- Parameters: - method (str (default="exact")) – The method of computation. Options are “exact” and “MC”.
- control (str (default="A")) – The control variant.
- variant (str (default="B")) – The tested variant.
- lift (float (default=0.0)) – The amount of uplift.
 - Returns: - probability - Return type: - tuple of floats - Notes - Method “exact” uses the normal approximation of the Student’s t-distribution for the error probability of the mean when the number of degrees of freedom is large. For small values, numerical intergration is used. 
 - 
probability_vs_all(method='quad', variant='B', lift=0, mlhs_samples=1000)¶
- Compute the error probability or chance to beat all variations. For example, given variants “A”, “B”, “C” and “D”, and choosing variant=”B”, we compute \(P[B > \max(A, C, D) + lift]\). - If - liftis positive value, the computation method must be Monte Carlo sampling.- Parameters: - method (str (default="quad")) – The method of computation. Options are “MC” (Monte Carlo), “MLHS” (Monte Carlo + Median Latin Hypercube Sampling) and “quad” (numerical integration).
- variant (str (default="B")) – The chosen variant.
- lift (float (default=0.0)) – The amount of uplift.
- mlhs_samples (int (default=1000)) – Number of samples for MLHS method.
 - Returns: - probability_vs_all - Return type: - tuple of floats 
 - 
update(data, variant)¶
- Update posterior parameters for a given variant with new data samples. - Parameters: - data (array-like, shape = (n_samples)) –
- variant (str) –