Pareto distribution¶
The probability density function of the Pareto distribution \(\mathcal{PA}(\alpha, \beta)\) with shape parameter \(\alpha > 0\) and scale parameter \(\beta > 0\), for \(x \in [\beta, \infty)\), is given by
and the cumulative distribution function is
The expected value and variance are as follows
The Pareto distribution is used as a conjugate prior distribution for the uniform distribution.
-
class
cprior.cdist.ParetoModel(name='', scale=0.005, shape=0.005)¶ Bases:
cprior.cdist.base.BayesModelPareto conjugate prior distribution model.
Parameters: - scale (float (default=0.005)) – Prior parameter scale.
- shape (float (default=0.005)) – Prior parameter shape.
-
cdf(x)¶ Cumulative distribution function of the posterior distribution.
Parameters: x (array-like) – Quantiles. Returns: cdf – Cumulative distribution function evaluated at x. Return type: numpy.ndarray
-
credible_interval(interval_length)¶ Credible interval of the posterior distribution.
Parameters: interval_length (float (default=0.9)) – Compute interval_length% credible interval. This is a value in [0, 1].Returns: interval – Lower and upper credible interval limits. Return type: tuple
-
mean()¶ Mean of the posterior distribution.
Returns: mean Return type: float
-
pdf(x)¶ Probability density function of the posterior distribution.
Parameters: x (array-like) – Quantiles. Returns: pdf – Probability density function evaluated at x. Return type: numpy.ndarray
-
ppf(q)¶ Percent point function (quantile) of the posterior distribution.
Parameters: x (array-like) – Lower tail probability. Returns: ppf – Quantile corresponding to the lower tail probability q. Return type: numpy.ndarray
-
rvs(size=1, random_state=None)¶ Random variates of the posterior distribution.
Parameters: - size (int (default=1)) – Number of random variates.
- random_state (int or None (default=None)) – The seed used by the random number generator.
Returns: rvs – Random variates of given size.
Return type: numpy.ndarray or scalar
-
scale_posterior¶ Posterior parameter scale.
Returns: scale Return type: float
-
shape_posterior¶ Posterior parameter shape.
Returns: shape Return type: float
-
std()¶ Standard deviation of the posterior distribution.
Returns: std Return type: float
-
var()¶ Variance of the posterior distribution.
Returns: var Return type: float
-
class
cprior.cdist.ParetoABTest(modelA, modelB, simulations=None, random_state=None)¶ Bases:
cprior.cdist.base.BayesABTestBayesian A/B testing with prior pareto distribution.
Parameters: - modelA (object) – The pareto model for variant A.
- modelB (object) – The pareto model for variant B.
- simulations (int or None (default=1000000)) – Number of Monte Carlo simulations.
- random_state (int or None (default=None)) – The seed used by the random number generator.
-
expected_loss(method='exact', variant='A', lift=0)¶ Compute the expected loss. This is the expected uplift lost by choosing a given variant.
- If
variant == "A", \(\mathrm{E}[\max(B - A - lift, 0)]\) - If
variant == "B", \(\mathrm{E}[\max(A - B - lift, 0)]\) - If
variant == "all", both.
If
liftis positive value, the computation method must be Monte Carlo sampling.Parameters: - method (str (default="exact")) – The method of computation. Options are “exact” and “MC”.
- variant (str (default="A")) – The chosen variant. Options are “A”, “B”, “all”.
- lift (float (default=0.0)) – The amount of uplift.
Returns: expected_loss
Return type: float or tuple of floats
- If
-
expected_loss_ci(method='MC', variant='A', interval_length=0.9, ci_method='ETI')¶ Compute credible intervals on the difference distribution of \(Z = B-A\) and/or \(Z = A-B\).
- If
variant == "A", \(Z = B - A\) - If
variant == "B", \(Z = A - B\) - If
variant == "all", both.
Parameters: - method (str (default="MC")) – The method of computation.
- variant (str (default="A")) – The chosen variant. Options are “A”, “B”, “all”.
- interval_length (float (default=0.9)) – Compute
interval_length% credible interval. This is a value in [0, 1]. - ci_method (str (default="ETI")) – Method to compute credible intervals. Supported methods are Highest
Density interval (
method="HDI) and Equal-tailed interval (method="ETI"). Currently,method="HDIis only available formethod="MC".
Returns: expected_loss_ci
Return type: np.ndarray or tuple of np.ndarray
- If
-
expected_loss_relative(method='exact', variant='A')¶ Compute expected relative loss for choosing a variant. This can be seen as the negative expected relative improvement or uplift.
- If
variant == "A", \(\mathrm{E}[(B - A) / A]\) - If
variant == "B", \(\mathrm{E}[(A - B) / B]\) - If
variant == "all", both.
Parameters: - method (str (default="exact")) – The method of computation. Options are “exact” and “MC”.
- variant (str (default="A")) – The chosen variant. Options are “A”, “B”, “all”.
Returns: expected_loss_relative
Return type: float or tuple of floats
- If
-
expected_loss_relative_ci(method='MC', variant='A', interval_length=0.9, ci_method='ETI')¶ Compute credible intervals on the relative difference distribution of \(Z = (B-A)/A\) and/or \(Z = (A-B)/B\).
- If
variant == "A", \(Z = (B-A)/A\) - If
variant == "B", \(Z = (A-B)/B\) - If
variant == "all", both.
Parameters: - method (str (default="MC")) – The method of computation.
- variant (str (default="A")) – The chosen variant. Options are “A”, “B”, “all”.
- interval_length (float (default=0.9)) – Compute
interval_length% credible interval. This is a value in [0, 1]. - ci_method (str (default="ETI")) – Method to compute credible intervals. Supported methods are Highest
Density interval (
method="HDI) and Equal-tailed interval (method="ETI"). Currently,method="HDIis only available formethod="MC".
Returns: expected_loss_relative_ci
Return type: np.ndarray or tuple of np.ndarray
- If
-
probability(method='exact', variant='A', lift=0)¶ Compute the error probability or chance to beat control.
- If
variant == "A", \(P[A > B + lift]\) - If
variant == "B", \(P[B > A + lift]\) - If
variant == "all", both.
If
liftis positive value, the computation method must be Monte Carlo sampling.Parameters: - method (str (default="exact")) – The method of computation. Options are “exact” and “MC”.
- variant (str (default="A")) – The chosen variant. Options are “A”, “B”, “all”.
- lift (float (default=0.0)) – The amount of uplift.
Returns: probability
Return type: float or tuple of floats
- If
-
update_A(data)¶ Update posterior parameters for variant A with new data samples.
Parameters: data (array-like, shape = (n_samples)) –
-
update_B(data)¶ Update posterior parameters for variant B with new data samples.
Parameters: data (array-like, shape = (n_samples)) –
-
class
cprior.cdist.ParetoMVTest(models, simulations=None, random_state=None, n_jobs=None)¶ Bases:
cprior.cdist.base.BayesMVTestBayesian Multivariate testing with prior Pareto distribution.
Parameters: - models (object) – The gamma models.
- simulations (int or None (default=1000000)) – Number of Monte Carlo simulations.
- random_state (int or None (default=None)) – The seed used by the random number generator.
-
expected_loss(method='exact', control='A', variant='B', lift=0)¶ Compute the expected loss. This is the expected uplift lost by choosing a given variant, i.e., \(\mathrm{E}[\max(control - variant - lift, 0)]\).
If
liftis positive value, the computation method must be Monte Carlo sampling.Parameters: - method (str (default="exact")) – The method of computation. Options are “exact” and “MC”.
- control (str (default="A")) – The control variant.
- variant (str (default="B")) – The tested variant.
- lift (float (default=0.0)) – The amount of uplift.
Returns: expected_loss
Return type: float
-
expected_loss_ci(method='MC', control='A', variant='B', interval_length=0.9, ci_method='ETI')¶ Compute credible intervals on the difference distribution of \(Z = control-variant\).
Parameters: - method (str (default="MC")) – The method of computation.
- control (str (default="A")) – The control variant.
- variant (str (default="B")) – The tested variant.
- interval_length (float (default=0.9)) – Compute
interval_length% credible interval. This is a value in [0, 1]. - ci_method (str (default="ETI")) – Method to compute credible intervals. Supported methods are Highest
Density interval (
method="HDI) and Equal-tailed interval (method="ETI"). Currently,method="HDIis only available formethod="MC".
Returns: expected_loss_ci
Return type: np.ndarray or tuple of np.ndarray
-
expected_loss_relative(method='exact', control='A', variant='B')¶ Compute expected relative loss for choosing a variant. This can be seen as the negative expected relative improvement or uplift, i.e., \(\mathrm{E}[(control - variant) / variant]\).
Parameters: - method (str (default="exact")) – The method of computation. Options are “exact” and “MC”.
- control (str (default="A")) – The control variant.
- variant (str (default="B")) – The tested variant.
Returns: expected_loss_relative
Return type: float
-
expected_loss_relative_ci(method='MC', control='A', variant='B', interval_length=0.9, ci_method='ETI')¶ Compute credible intervals on the relative difference distribution of \(Z = (control - variant) / variant\).
Parameters: - method (str (default="MC")) – The method of computation.
- control (str (default="A")) – The control variant.
- variant (str (default="B")) – The tested variant.
- interval_length (float (default=0.9)) – Compute
interval_length% credible interval. This is a value in [0, 1]. - ci_method (str (default="ETI")) – Method to compute credible intervals. Supported methods are Highest
Density interval (
method="HDI) and Equal-tailed interval (method="ETI"). Currently,method="HDIis only available formethod="MC".
Returns: expected_loss_relative_ci
Return type: np.ndarray or tuple of np.ndarray
-
expected_loss_relative_vs_all(method='quad', control='A', variant='B', mlhs_samples=1000)¶ Compute the expected relative loss against all variations. For example, given variants “A”, “B”, “C” and “D”, and choosing variant=”B”, we compute \(\mathrm{E}[(\max(A, C, D) - B) / B]\).
Parameters: - method (str (default="MLHS")) – The method of computation. Options are “MC” (Monte Carlo), “MLHS” (Monte Carlo + Median Latin Hypercube Sampling) and “quad” (numerical integration).
- variant (str (default="B")) – The chosen variant.
- mlhs_samples (int (default=1000)) – Number of samples for MLHS method.
Returns: expected_loss_relative_vs_all
Return type: float
-
expected_loss_vs_all(method='quad', variant='B', lift=0, mlhs_samples=1000)¶ Compute the expected loss against all variations. For example, given variants “A”, “B”, “C” and “D”, and choosing variant=”B”, we compute \(\mathrm{E}[\max(\max(A, C, D) - B, 0)]\).
If
liftis positive value, the computation method must be Monte Carlo sampling.Parameters: - method (str (default="quad")) – The method of computation. Options are “MC” (Monte Carlo), “MLHS” (Monte Carlo + Median Latin Hypercube Sampling) and “quad” (numerical integration).
- variant (str (default="B")) – The chosen variant.
- lift (float (default=0.0)) – The amount of uplift.
- mlhs_samples (int (default=1000)) – Number of samples for MLHS method.
Returns: expected_loss_vs_all
Return type: float
-
probability(method='exact', control='A', variant='B', lift=0)¶ Compute the error probability or chance to beat control, i.e., \(P[variant > control + lift]\).
If
liftis positive value, the computation method must be Monte Carlo sampling.Parameters: - method (str (default="exact")) – The method of computation. Options are “exact” and “MC”.
- control (str (default="A")) – The control variant.
- variant (str (default="B")) – The tested variant.
- lift (float (default=0.0)) – The amount of uplift.
Returns: probability
Return type: float
-
probability_vs_all(method='quad', variant='B', lift=0, mlhs_samples=1000)¶ Compute the error probability or chance to beat all variations. For example, given variants “A”, “B”, “C” and “D”, and choosing variant=”B”, we compute \(P[B > \max(A, C, D) + lift]\).
If
liftis positive value, the computation method must be Monte Carlo sampling.Parameters: - method (str (default="MLHS")) – The method of computation. Options are “MC” (Monte Carlo), “MLHS” (Monte Carlo + Median Latin Hypercube Sampling) and “quad” (numerical integration).
- variant (str (default="B")) – The chosen variant.
- lift (float (default=0.0)) – The amount of uplift.
- mlhs_samples (int (default=1000)) – Number of samples for MLHS method.
Returns: probability_vs_all
Return type: float
-
update(data, variant)¶ Update posterior parameters for a given variant with new data samples.
Parameters: - data (array-like, shape = (n_samples)) –
- variant (str) –