Normal-normal-inverse-gamma conjugate model¶
Posterior predictive distribution¶
If \(X| \mu, \sigma^2 \sim \mathcal{N}(\mu, \sigma^2)\) with \((\mu, \sigma) \sim \mathcal{N}\Gamma^{-1}(\mu_0, \lambda, \alpha, \beta)\), then the posterior predictive probability density function, the expected value and variance of \(X\) are
\[f(x; \mu_0, \lambda, \alpha, \beta) = \frac{\alpha}{\beta(1 + \lambda^{-1})}
\frac{\left(1 + \frac{1}{2\alpha} \left(\frac{\alpha(x - \mu_0)}{\beta(1+\lambda^{-1})} \right)^2 \right)^{-\alpha - 1/2}}
{\sqrt{2\alpha}B(\alpha, 1/2)},\]
\[\mathrm{E}[X] = \mu_0, \quad \mathrm{Var}[X] = \frac{\left(\beta(1 +
\lambda^{-1})\right)^2}{\alpha(\alpha - 1)},\]
where \(\mathrm{E}[X]\) is defined for \(\alpha > 1/2\) and \(\mathrm{Var}[X]\) is defined for \(\alpha > 1\).
Proofs¶
Posterior predictive probability density function
Note that this is the probability density function of the Student’s t-distribution, thus
\[X \sim t_{2 \alpha}\left(\mu_0, \frac{\beta (1 + \lambda^{-1})}{\alpha}\right),\]
see [Mur07].
Posterior predictive expected value
Apply properties of the Student’s t-distribution.
\[\mathrm{E}[X] = \mu_0.\]
Posterior predictive variance
Apply properties of the Student’s t-distribution.
\[\mathrm{Var}[X] = \frac{\left(\beta(1 +
\lambda^{-1})\right)^2}{\alpha(\alpha - 1)}.\]
References¶
[Mur07] | K. P. Murphy. Conjugate Bayesian analysis of the Gaussian distribution. 2007. URL: https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf. |